

Justification for Chronic Kidney Disease Subgroup in SPRINT

American Society of Hypertension 27th Annual Meeting, May 20, 2012

> Alfred K. Cheung, M.D. University of Utah

American Society of Hypertension, Inc. (ASH) **Disclosure of Relationships** Over the past 12 months

No relevant conflict of interest

Outline

- High CV events in CKD
- Association of BP with CV outcomes in CKD
- Association of BP with kidney outcomes in CKD
- CKD in SPRINT protocol
- Considerations for proteinuria in SPRINT
- Take-home message

Mutual Interests to NHLBI and NIDDK

- SPRINT targets individuals with high CV risks; CKD confers very high CV risks
- The optimal BP target for CKD population is unclear

Adjusted Rate of Death or CV Events

Go, NEJM, 2004

Association of eGFR and Albuminuria with CV Mortality

- CKD Prognosis Consortium
- 266,975 community-based high-risk (HTN, DM, CVD) individuals

Observational Studies of Association between SBP and Non-Renal Outcomes in CKD

Observational Studies of SBP and Death

- IDNT (Irbesartan Diabetic Nephropathy Trial)
- 1,590 T2DM; mean Screat ~1.67 mg/dL; Upr > 0.9 g/d
- BP goal <135/85

Observational Studies of SBP and Stroke

- Atherosclerosis Risk in Community Study + Cardiovascular Health Study
- 1,549 CKD (eGFR <60 mL/min/1.73m²) + 18,809 non-CKD

RCT of BP Level on CV Outcomes in CKD

Effect of BP on CV Events in CKD

Post-hoc Analysis of RCT (AASK)

(African-American Study of Kidney Disease & HTN; eGFR 20-65 mL/min)

CV Composite (hospitalization + death)	Event number (per patient-year)			
Target MAP 102-107 mm Hg		78 (0.035)		
Target MAP 92 mm Hg		71 (0.032)		
HR = 0.84 (0.61-1.16); p = 0.29				

- No BP effect on CV events
- No interaction of BP with proteinuria on CV events

Greene, unpublished

Observational Study of Association between SBP and Kidney Outcomes in CKD

Observational Studies of SBP in CKD

- N = 16,129 in KEEP (Kidney Early Evaluation Program)
- Mean age = 69 yrs
- eGFR < 60 mL/min/1.73m²
- 43% DM
- 320 ESRD events in 2.87 yr

RCT of BP Level on Renal Outcomes in CKD

Apparent Renoprotection Associated with Lower BP (post-trial long-term follow-up in AASK)

N=1,094 (iGFR 20-65 mL/min)

Appel, NEJM, 2010

Effect of BP on GFR Decline in non-IDDM CKD

Modification Diet in Renal Disease (RCT)

No renal benefits in low BP arm

Klahr, NEJM, 1994

Renprotection of MAP <92 mm Hg in Proteinuria?

Klahr, NEJM, 1994

Limited subgroup data on proteinuric individuals suggest benefits with BP ~125/75

Practice guideline BP target for all CKD < 130/80

BP Targets in MDRD Study

	18-60 yrs old	61-70 yrs old
Usual MAP	≤ 107 mm Hg	≤ 113 mm Hg
target	(~ 140/90 mm Hg)	(~ 160 /90 mm Hg)
Low MAP	≤ 92 mm Hg	≤ 98 mm Hg
target	(~ 125/75 mm Hg)	(~ 145 /75 mm Hg)

Beck, CCT, 1991

What stage of CKD should be included in SPRINT?

- CKD stage 3 (GFR 30-59 mL/min/1.73m²) is common and associated with high CV risks
- Including more advanced CKD
 - Pro: Higher CV event rate
 - Understand how to treat CKD subpopulation (more than modest age-related GFR decline)
 - Cons: More likely to have effect modification
 Too close to dialysis (difficulty with BP target)
- Inclusion criterion: eGFR 20-59 mL/min/1.73m² (not defined by proteinuria)
- Kidney exclusion criteria: DM or PKD

<u>Justification for Equipoise to Study BP Effect</u> in Pts with CKD and Baseline UP < 1 g/day

- MDRD and AASK evidence for BP x proteinuria interaction based on secondary analyses
- MDRD
 - small number of patients
 - short BP exposure
 - confounded with ACEI
 - based primarily on patients with baseline UP > 3 g/d
- AASK evidence depends on post-hoc analysis after intervention termination
- Evidence limited to kidney outcomes; little data on CVD events or mortality and no trends for interaction

Considerations for Proteinuria as Exclusion Criteria

- Significant proteinuria is risk factor for rapid decline in eGFR; this association may be dependent on BP level
- Therefore, questionable equipoise for proteinuria >1 g/d (~1 g/g creatinine)

Renal Outcomes in SPRINT

- <u>Main</u> renal outcome: Composite of initiation of ESRD therapy or a confirmed 50% decline in eGFR (CKD subgroup only)
- Other renal outcome: initiation of ESRD therapy or a 30% decline in eGFR to <60 mL/min/1.73m² (non-CKD subgroup only)
- Incident proteinuria: doubling of urinary albumin-tocreatinine ratio from <10 mg/g to >10 mg/g (entire cohort)

Take-Home Message

- Optimum SBP target in CKD Is uncertain
- At high CV risks, CKD subpopulation contributes to CV events in SPRINT

American Society of Hypertension, Inc. (ASH) **Disclosure of Relationships** Over the past 12 months

No relevant conflict of interest